Biotransformation of Jervine by Cunninghamella echinulata

by Ke-Yu Chen^a), Yi-Feng Lü^a)^b), Wei-Dong Zhang^a)^c), Jian Tang^c), Run-Hui Liu^a), and Hui-Liang Li^{*a})

^a) Department of Phytochemistry, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, P. R. China (phone/fax: +86-21-81871245;

e-mail: faranli@hotmail.com)

^b) School of Traditional Chinese Materia Medica 49#, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, P. R. China

^c) School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

Biotransformation of jervine (1) by *Cunninghamella echinulata* (ACCC 30369) was carried out. Four biotransformation products were obtained, and three of them, 3-5, were identified as new compounds. On the basis of their NMR and mass-spectral data, their structures were characterized as jervinone (2), 7α -hydroxyjervine (3), 14α -hydroxyjervine (4), and 1β , 7α -dihydroxyjervine (5). The X-ray diffraction structure of 1 is also reported for the first time.

Introduction. – Microbial transformation is an effective method for the structural modification of bioactive natural compounds. Its application in asymmetric synthesis is increasing due to its versatility and ease [1]. A variety of transformations on natural products such as oxidation, reduction, hydrolysis, isomerization, epimerization, rearrangement, *D*-homoannulation, *Michael* addition, and reverse aldol reaction have been already performed [2]. *Cunninghamella echinulata*, a filamentous fungus, is recognized for its potential for steroid hydroxylation and has been noted for its ability to mimic mammalian hepatic metabolism with other substrates [3][4].

Veratrum alkaloids are a group of potent hypotensive agents that act by reflex suppression of the cardiovascular system [5][6]. Jervine (1) is one of the most important steroidal alkaloid derived from the *Veratrum* genus. Similar to cyclopamine, which also occurs in the *Veratrum* genus, it is a teratogen implicated in birth defects when consumed by animals during a certain period of their gestation [7–10]. Biotransformations of *Veratrum* alkaloids, such as rubijervine, jervine, and veratramine with various microorganisms have been reported previously [11-13].

In continuation of our studies on the phytochemistry of *Veratrum* alkaloids [14][15] and biotransformation studies on the *Veratrum* alkaloids [16], we now report the characterization of four metabolites of jervine (1) in cell suspension of *C. echinulata* (ACCC 30369). These metabolites were identified as jervinone (2), 7α -hydroxyjervine (3), 14α -hydroxyjervine (4) and 1β , 7α -dihydroxyjervine (5) by spectroscopic methods (*Fig. 1*). We also report here the X-ray diffraction structure of jervine (1) for the first time.

Results and Discussion. – Compound **3** was obtained as a white amorphous powder, showing a positive reaction with *Dragendorff*'s reagent. The HR-ESI-MS (positive-ion

^{© 2013} Verlag Helvetica Chimica Acta AG, Zürich

Fig. 1. Structures of compounds 1-5

mode) provided the molecular formula $C_{27}H_{39}NO_4 m/z$ 442.2952 ($[M + H]^+$). The IR spectrum exhibited absorptions for an OH group (3370 and 1070 cm⁻¹). The ¹³C-NMR spectrum (*Table 1*) of **3** showed signals due to four Me, seven CH₂, ten CH groups, and six quaternary C-atoms, including one C=C bond (δ (C) 142.3 (C(5)), 123.4 (C(6))), and three O-bearing sp³-C-atoms. The ¹H-NMR spectrum (*Table 2*) displayed resonances for four Me groups (δ (H) 0.85 (d, J = 6.6, Me(27)), 0.89 (s, Me(19)), 0.90 (d, J = 7.1, Me(21)), 2.01 (s, Me(18)), and the ¹³C-NMR exhibited the signals of two C-atoms attached to an N-atom at δ (C) 65.4 (C(22)) and 56.7 (C(26)), which are characteristic for a jervine-type steroid alkaloid. The OH is located at C(7) due to the HMBCs between the H-atom resonating at δ (H) 4.61–4.67 (m, H–C(7)) and C(8) (δ (C) 37.0). Furthermore, the relative configuration of 7-OH was deduced as α by NOESY correlation between H–C(7) and the H-atom resonating at δ (H) 2.30–2.36 (m, H_{\vert \mathbf{\mathbf{m}} -C(8)). Therefore, the structure of **3** was elucidated as 7 α -hydroxyjervine.}

Table 1. ¹³C-NMR Data of **3**–**5**. At 125 MHz in CD₃OD; δ in ppm. Atom numbering as indicated in Fig. 1.

C-Atom	3	4	5	C-Atom	3	4	5
C(1)	38.2	38.1	74.3	C(15)	24.3	24.1	24.0
C(2)	29.6	29.5	29.5	C(16)	28.4	28.7	28.8
C(3)	67.9	68.1	67.2	C(17)	84.3	84.3	84.7
C(4)	31.1	30.8	31.3	C(18)	11.6	11.6	11.7
C(5)	142.3	141.9	143.2	C(19)	18.1	18.5	18.0
C(6)	123.4	122.3	124.5	C(20)	39.8	39.8	39.6
C(7)	68.8	32.6	69.5	C(21)	10.6	10.7	10.7
C(8)	37.0	36.8	38.2	C(22)	65.4	65.8	65.9
C(9)	61.6	61.9	61.7	C(23)	76.0	75.2	75.4
C(10)	34.8	34.9	34.8	C(24)	38.2	38.5	38.5
C(11)	206.3	206.9	206.6	C(25)	31.3	31.3	31.5
C(12)	138.5	138.4	138.4	C(26)	56.7	56.6	56.8
C(13)	147.1	146.5	146.7	C(27)	18.7	18.9	19.1
C(14)	46.3	77.8	45.5				

Compound **4** was obtained as a white amorphous powder, showing a positive reaction with *Dragendorff*'s reagent. The HR-ESI-MS (positive-ion mode) gave the

molecular formula $C_{27}H_{39}NO_4 m/z$ 442.2956 ($[M + H]^+$). The IR spectrum exhibited absorptions for OH groups (3361 and 1073 cm⁻¹). The ¹³C-NMR data of **4** were similar to those of jervine (**1**) except for the presence of a OH group. Therefore, **4** was determined as an oxidized analog of **1**. The OH was localized at C(14) due to the HMBCs between H-atom resonating at $\delta(H)$ 1.72–1.77 (m, 1 H, CH₂(15)) and C(14) ($\delta(C)$ 77.8). Comparing the spectra of **4** with those of compound **1**, the chemical shifts of C(8), C(12), C(13), and C(15) were similar to those found in compounds **1**, **3**, and **5**, indicating the relative α -configuration for 14-OH. Thus, the structure of **4** was identified as 14 α -hydroxyjervine.

Compound **5** was obtained as a white amorphous powder, showing a positive reaction with *Dragendorff*'s reagent. The HR-ESI-MS (positive-ion mode) led to the molecular formula $C_{27}H_{39}NO_5$ (m/z 458.2906, $[M + H]^+$). The IR spectrum exhibited absorptions for OH groups (3361 and 1068 cm⁻¹) and C=C bonds (1624 cm⁻¹). The ¹³C-(*Table 1*) and ¹H-NMR (*Table 2*), and ESI mass spectra suggested it to be a dihydroxylated jervine derivative. Three OH groups are localized at C(1) (δ (C) 74.3), C(3) (67.2), and C(7) (69.5), respectively, due to the HMBC correlations between the H-atom resonating at δ (H) 3.85–3.89 (m, H–C(1)) and C(2) (δ (C) 29.5), the H-atom resonating at δ (H) 3.86–3.92 (m, H–C(3)) and C(2) (δ (C) 29.5), C(4) (31.3), and the H-atom resonating at δ (H) 4.59–4.66 (m, H–C(7)) and C(6) (δ (C) 124.5), C(8) (38.2). The stereochemical relationship among the functional groups, *i.e.*, 3-OH, Me(19), Me(21), and Me(27), was established to be identical to that of the

Table 2. ^{*i*}*H-NMR Data of* **3–5**. At 500 MHz in CD₃OD; δ in ppm, *J* in Hz. Atom numbering as indicated in *Fig. 1*.

H-Atom	3	4	5
$CH_{2}(1)$	2.51-2.53(m), 2.12-2.17(m)	2.47 - 2.52 (m), 2.10 - 2.13 (m)	3.85-3.89 (<i>m</i>)
$CH_{2}(2)$	1.80 - 1.85(m), 1.70 - 1.74(m)	1.80 - 1.84(m), 1.70 - 1.75(m)	2.29 - 2.34(m), 1.92 - 1.96(m)
H-C(3)	4.12-4.21 (br. s)	4.11 - 4.26 (m)	3.86 - 3.92 (m)
$CH_{2}(4)$	2.41 - 2.47 (m), 1.52 - 1.61 (m)	2.38-2.45(m), 1.51-1.55(m)	2.57 - 2.63 (m), 2.39 - 2.44 (m)
H–C(6)	5.35 (d, J = 5.1)	5.35 (d, J = 5.1)	5.62 (d, J = 5.1)
H-C(7)	4.61 - 4.67 (m)	2.21 - 2.27 (m), 2.05 - 2.09 (m)	4.59 - 4.66 (m)
H-C(8)	2.30 - 2.36(m)	1.63 - 1.67 (m)	2.35 - 2.39(m)
H-C(9)	1.90 - 1.97 (m)	1.81 - 1.85 (m)	2.04 - 2.07 (m)
H–C(14)	1.96 - 2.01 (m)	_	2.09 - 2.13 (m)
$CH_{2}(15)$	1.92 - 1.97 (m), 1.31 - 1.33 (m)	2.21 - 2.24(m), 1.72 - 1.77(m)	1.99 - 2.04 (m), 1.39 - 1.42 (m)
$CH_{2}(16)$	2.33 - 2.36(m), 1.38 - 1.41(m)	$2.07 - 2.11 \ (m), \ 1.68 - 1.71 \ (m)$	2.33 - 2.36 (m), 1.32 - 1.36 (m)
Me(18)	2.01 (s)	2.04 (s)	2.01 (s)
Me(19)	0.89(s)	0.85(s)	0.91 (s)
H-C(20)	2.53 - 2.57(m)	2.57 - 2.62(m)	2.55 - 2.61 (m)
Me(21)	0.90 (d, J = 7.1)	$0.91 \ (d, J = 7.0)$	0.91 (d, J = 7.0)
H–C(22)	2.68 - 2.71 (m)	2.64 - 2.69(m)	2.67 - 2.70 (m)
$CH_{2}(23)$	3.43 - 3.50 (m)	3.66 - 3.69(m)	3.62 - 3.66 (m)
$CH_{2}(24)$	2.26 - 2.30 (m), 1.17 - 1.22 (m)	2.23 - 2.26(m), 1.13 - 1.16(m)	2.24 - 2.27 (m), 1.09 - 1.13 (m)
H-C(25)	1.48 - 1.53 (m)	1.49 - 1.52 (m)	1.47 - 1.52 (m)
$CH_{2}(26)$	3.14 - 3.18 (dd, J = 12.0, 3.5),	3.07 - 3.11 (dd, J = 11.0, 3.5),	3.19 - 3.25 (dd, J = 12.0, 6.0),
	2.34 - 2.38(m)	2.28 - 2.31 (m)	2.29 - 2.34(m)
Me(27)	0.85 (d, J = 6.6)	0.87 (d, J = 6.6)	0.86 (d, J = 6.0)

starting material **1** by NOESY analysis, and also by comparison of chemical shifts and coupling constants of **5** with those of **1**. The relative configuration of 1-OH and 7-OH was deduced as β/α , respectively, by the NOESY correlations between H–C(1) resonating at δ (H) 2.04–2.07 (m, H_{α}–C(9)) and H–C(7) resonating at 2.35–2.39 (m, H_{β}–C(8)) (*Fig.* 2). Therefore, the structure of **5** was identified as 1 β ,7 α -dihydrox-yjervine.

Fig. 2. Key NOESY correlations of 5

This work was supported by the *Program NCET Foundation*, *NSFC* (30725045, 81102335), partially supported by *Global Research Network for Medicinal Plants* (GRNMP) and *King Saud University*, *Shanghai Leading Academic Discipline Project* (B906), *FP7-PEOPLE-IRSES-2008* (TCMCANCER Project 230232), *Key Laboratory of Drug Research for Special Environments*, *PLA*, *Shanghai Engineering Research Center for the Preparation of Bioactive Natural Products* (10DZ2251300), and the *Scientific Foundation of Shanghai China* (09DZ1975700, 09DZ1971500,10DZ1971700, and 11QA1408200).

Experimental Part

General. Column chromatography (CC): *MCI* gel *CHP20P* (high-porous polymer 75–150 µm; *Mitsubishi Chemicals*, Japan), reversed-phase (RP) silica gel *RP-18* (40–63 µm; *Merck*, Germany), silica gel (SiO₂; 200–300 mesh; *Yantai*, P. R. China), and *Sephadex LH-20* (*Pharmacia Co., Ltd.*). TLC: SiO₂ plates; visualization by spraying with 10% H₂SO₄ in EtOH, followed by heating. Optical rotation: *Perkin-Elmer 341* polarimer. IR Spectra: *Nicolet-Compact-40-Bruker-Vector-22* spectrophotometer; $\tilde{\nu}$ in cm⁻¹. NMR Spectra: *Bruker AVANCE^{II-500}* NMR, for ¹H at 500 and ¹³C at 125 MHz; δ in ppm rel. to Me₄Si as internal standard, *J* in Hz. MS: *Varian MAT-212* mass spectrometer (for ESI) and *Q-Tof* micro mass spectrometer (for HR-ESI); in *m/z*.

Plant Material. The plants were collected in Yanbian, Jilin Province, P. R. China, in September 2005, and authenticated as *V. dahuricum* by Prof. *Yong-Zhen Liu*, School of Pharmacy, Yanbian University, China. A voucher specimen (No. 211) was deposited with the Herbarium of the School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.

Organisms. The stock culture of *C. echinulata* (ACCC 30369) was maintained on a potato dextrose agar slant. Four 1000-ml *Erlenmeyer* flasks, each containing 300 ml of liquid medium consisting of 0.1% peptone, 0.1% yeast extract, 0.1% beef extract, and 0.5% glucose were inoculated with freshly obtained *C. echinulata* cultured from the agar slant on a rotary shaker at 180 rpm. After cultivation at 28° for 72 h,

the *jervine* (1) soln. (50 mg of 1 dissolved in 250 μ l of EtOH) was added to each flask, and the incubation was continued for 12 d.

Microbial Metabolism of Jervine (1). After 12 d of incubation, the incubation mixtures were pooled and filtered. The filtrate was passed through a *MCI-gel CHP20P* column, and washed with H₂O to remove sugars; then, successive extraction with 20% aq. MeOH, 60% aq. MeOH, and MeOH gave the *Fractions A*, *B*, and *C*, resp. Each fraction was evaporated to dryness *in vacuo* and analyzed by TLC (CHCl₃/MeOH/H₂O 65:35:10; visualization by spraying with 10% H₂SO₄ soln.). *Fr. C* was chromatographed repeatedly through a column on SiO₂ (CHCl₃/MeOH 10:1) to afford **2** (8.8 mg). *Fr. B* was subjected repeatedly to CC (SiO₂; CHCl₃/MeOH 5:1; *Sephadex LH-20*; 70% MeOH) to furnish **3** (4.6 mg) and **4** (6.1 mg). *Fr. A* was dissolved in 10% aq. MeOH and subjected to CC (RP SiO₂ (*ODS*); H₂O/MeOH 100:10 \rightarrow 0:100) to give **5** (3.6 mg).

Jervine (1). Colorless prisms. $C_{27}H_{39}NO_3$. ESI-MS: 426 ($[M+H]^+$). $[\alpha]_{23}^{25} = -58.2$ (c = 3.08, MeOH). *Jervine* (1) was isolated from the roots of *Veratrum dahuricum* with purity of 99.0% by HPLC analysis in our laboratory. The chemical structure was identified by detailed NMR analysis and comparing its data with those in the literature [17]. An X-ray diffraction analysis of (–)-varatrobasine (= jervine-11 β -ol) has been reported previously [18]. We performed the X-ray-analysis of 1 (*Fig. 3*) to establish the absolute configuration of (–)-jervine.

Fig. 3. X-Ray crystal structure of 1

7*a*-Hydroxyjervine (= (3 β ,7*a*,22S,23R)-3,7-Dihydroxy-17,23-epoxyveratraman-11-one = (3S,3'R, 3a'S,6S,6'S,6aS,6bS,7a'R,9R,11aS,11bR)-2,3,3'a,4,4',5',6,6',6a,6b,7,7',7'a,8,11a,11b-Hexadecahydro-3,6-di-hydroxy-3',6',10,11b-tetramethylspiro[9H-benzo[a]fluorene-9,2'(3'H)-furo[3,2-b]pyridin]-11(1H)-one; **3**). White amorphous powder. [a] $_{23}^{23} = -113.4$ (c = 0.81, MeOH). IR (KBr): 3370, 2951, 2177, 1623, 1070. ¹H- and ¹³C-NMR: *Tables 2* and *1*, resp. 2D-NMR (HMBC; 500 MHz, CD₃OD): H–C(3)/C(4), H–C(7)/C(5), H–C(7)/C(8), H–C(15)/C(14). ESI-MS: 442 ([M+H]⁺). HR-ESI-MS: 442.2952 ([M+H]⁺, C₂₇H₄₀NO₄⁺; calc. 442.2957).

14α-Hydroxyjervine (=(3β,22S,23R)-3,14-Dihydroxy-17,23-epoxyveratraman-11-one = (3S,3'R, 3a'S,6'S,6aR,6bR,7a'R,9R,11aS,11bR)-2,3,3'a,4,4',5',6,6',6a,6b,7,7',7'a,8,11a,11b-Hexadecahydro-3,6b-di-hydroxy-3',6',10,11b-tetramethylspiro[9H-benzo[a]fluorene-9,2'(3'H)-furo[3,2-b]pyridin]-11(1H)-one; **4**). White amorphous powder. [a]²³_D = -54.6 (c = 0.76, MeOH). IR (KBr): 3361, 2947, 2170, 1617, 1073. ¹H- and ¹³C-NMR: *Tables 2* and 1, resp. 2D-NMR (HMBC; 500 MHz, CD₃OD): H–C(3)/C(4), H–C(7)/C(8), H–C(15)/C(14). ESI-MS: 442 ([M + H]⁺). HR-ESI-MS: 442.2956 ([M + H]⁺, C₂₇H₄₀NO₄⁺; calc. 442.2957).

1076

hydro-1,3,6-trihydroxy-3',6',10,11b-tetramethylspiro[9H-benzo[a]fluorene-9,2'(3'H)-furo[3,2-b]pyridin]-11(1H)-one; **5**). White amorphous powder. $[a]_D^{23} = -8.9$ (c = 0.60, MeOH). IR (KBr): 3361, 2937, 2155, 1624, 1068. ¹H- and ¹³C-NMR: *Tables 2* and 1, resp. 2D-NMR (HMBC; 500 MHz, CD₃OD): H–C(1)/C(2), H–C(3)/C(4), H–C(7)/C(5), H–C(7)/C(8). ESI-MS: 458 ([M + H]⁺). HR-ESI-TOF-MS: 458.3304 ([M + H]⁺, C₂₇H₄₀NO₅⁺; calc. 458.2906).

*X-Ray Diffraction Structure Analysis of Jervine*¹). Single crystal for analysis was obtained from CHCl₃/MeOH/H₂O. Data collection was performed with a *Bruker APEX2 CCD* and graphite monochromated CuK_a radiation ($\lambda = 1.54178$ Å) at 133(2) K. Crystallgraphic data: C₂₇H₃₉NO₃· CH₃Cl·2 H₂O; *M*_r 512.11; crystal size $0.25 \times 0.20 \times 0.18$ mm, orthorhombic, space group *P*2₁2₁2₁; *a* = 7.4412(10) Å, *b* = 9.9446(10) Å, *c* = 36.9172(3) Å, $\alpha = \beta = \gamma = 90^{\circ}$; *V* = 2731.86(5) Å³; *Z* = 4; *D*_x = 1.245 g cm⁻³; *F*₀₀₀ = 1112; μ (CuK_a) 1.535 mm⁻¹. Cell refinement and data reduction: *Bruker SAINT*. Program used to solve and refine structure: SHELXS-97 and SHELXL-97, resp.; refinement on *F*² with full-matrix least-squares calculations. All non-H-atoms were filtered with anisotropic parameters, and all H-atoms were positioned by geometrical calculation and refined by ride-on method with relative isotropic parameters. Absorption correction were applied with semi-empirical from equivalents (maxmin transmission, 0.7679/0.7003). 12357 Reflections (4615 unique, *R*_{int} = 0.0218) were measured in the θ range of 2.39–66.56°; limiting indices, $8 \ge h \ge -8$, $11 \ge k \ge -11$, $41 \ge l \ge -43$. The final phase converged to *R*₁=0.0289 (*wR*₂=0.0787) for 4615 observed reflections (*I*>2*a*(*I*)) and 331 refined parameters, *R*₁= 0.0294 (*wR*₂=0.0790) for all unique reflections; goodness-of-fit on *F*², 1.046.

REFERENCES

- [1] A. U. Rahman, M. I. Choudhary, Front. Nat. Prod. Chem. 2005, 1, 133.
- [2] W. Charney, H. L. Herzog, 'Microbial Transformations of Steroids', New York, Academic Press, 1967, pp. 16–73.
- [3] W. Yang, P. J. Davis, Drug Metab. Dispos. 1992, 20, 38.
- [4] M. Hezari, P. J. Davis, Drug Metab. Dispos. 1992, 20, 882.
- [5] S. M. Kupchan, J. H. Zimmerman, A. Afonso, J. Nat. Prod. 1961, 24, 1.
- [6] P. Honerjager, Rev. Physiol., Biochem. Pharmacol. 1982, 92, 1.
- [7] M. Liscovitch, Y. Lavie, WO 2000-2000IL866 20001228, 2001.
- [8] P. A. Beachy, J. A. Porter, M. K. Cooper, U.S. Patent, US 99-250785 19990212, 2001.
- [9] P. A. Beachy, U.S. Patent, WO 2000-2000 US28479, 2001.
- [10] D. T. Berge, A. Brouwer, F. Meijlink, Development 2001, 128, 2929.
- [11] K. A. Sayed, D. C. Dunbar, Chem. Pharm. Bull. 2002, 50, 1427.
- [12] K. A. Sayed, A. F. Halim, J. D. Chesney, *Phytochemistry* 2000, 55, 19.
- [13] K. A. Sayed, J. Nat. Prod. 1998, 61, 149.
- [14] H. L. Li, J. Tang, Rapid Commun. Mass Spectrom. 2007, 21, 869.
- [15] J. Tang, H. L. Li, W. D. Zhang, Helv. Chim. Acta 2007, 90, 769.
- [16] Y. F. Lü, Helv. Chim. Acta 2008, 91, 819.
- [17] W. Gaffield, M. Benson, R. E. Lundin, R. F. Keeler, J. Nat. Prod. 1986, 49, 286.
- [18] G. N. Reeke, R. L. Vincent, W. N. Lipscomb, J. Am. Chem. Soc. 1968, 90, 1663.

Received July 4, 2012

CCDC-889549 contains the supplementary crystallographic data for this article. These data can be obtained free of charge *via* http://www.ccdc.cam.ac.uk/data_request/cif.